Nephrologist's take on the effect and impact of SGLT-2 inhibitors and GLP-1 RAs on Kidney Disease in people with diabetes

CHRISTOS ARGYROPOULOS, DIVISION CHIEF NEPHROLOGY, UNIVERSITY OF NEW MEXICO

Disclosures

≽Quanta

Objectives

- 1. Review strategies for monitoring disease, selection of new therapies and referrals to nephrology
- 2. Review the clinical data supporting the current pharmacological paradigm for treating Diabetes in CKD
- 3. Discuss the risk management of new therapies
- 4. Summarize considerations for special populations (elderly, kidney transplant recipients)

Diabetic Kidney Disease is still a problem in the 21st century

Data Source: 2023 United States Renal Data System Annual Data Report

... despite improvements in care and

JAMA. 2016;316(6):602-610

Can you help me out?

You are scheduled to see a 58 year old patient with long standing (>15 years) history of somewhat controlled diabetes type 2 (A1c between 7.5 - 8.0) during the last 8 years. The patient has had a stroke 6 years ago but no retinopathy and their blood pressure is controlled at a level of 135/80 mmHg on 100mg of Losartan and 1.25 mg of Indapamide. The patient's estimated glomerular filtration rate is 45 ml/min/1.73m2 and the last urine albumin to creatinine ratio (UACR) is 18 mg/g of creatinine. What can you say about the patient's cause of CKD?

- A. It cannot be due to diabetes because the UACR is low
- B. It cannot be due to diabetes because the patient has no retinopathy
- C. It is likely due to diabetes because the A1c is not < 6.5
- D. Cannot rule out a diabetic or a non-diabetic cause based on the information provided

High overlap between DKD and CVD leading to high health care utilization => must address more than the lab value

Figure 3.6 All-cause hospitalization rates in older adults, by presence of diabetes mellitus and cardiovascular disease, Medicare FFS, 2021

Data Source: 2023 United States Renal Data System Annual Data Report

What is the prob we are trying to solve?

537 million

People live with diabetes worldwide

Residual albuminuria, Albuminuria Delta after ARB predict kidney outcomes

https://doi.org/10.1111/j.1523-1755.2004.00653.x

Does this patient need saving?

67-year-old patient with T2D for the last 18 years. Had an AMI with a stent to the LAD 10 years ago and their EF was 48% last year. The A1c is 6.8, the urine albumin to creatinine ratio is 55mg/g and the eGFR is 48 ml/min/1.73m2. They are currently receiving Metformin 1000mg bid, pioglitazone 30mg po daily and Sitagliptin 100mg po daily. What is the appropriate next step?

- A. CYA in 4 months
- B. Add Dapagliflozin
- C. Add Dulaglutide

D. Make a plan to flip the regimen to Metformin+Dapa+Dula over the next 6 months

* In people with HF, CKD, established CVD, or multiple risk factors for CVD, the decision to use a GLP-1 RA or SGLT2i with proven benefit should be independent of background use of metformin; † A strong recommendation is warranted for people with CVD and a weaker recommendation for those with indicators of high CV risk. Moreover, a higher absolute risk reduction and thus lower numbers needed to treat are seen at higher levels of baseline risk and should be factored into the shared decision-making process. See text for details; ^ Low-dose TZD may be better tolerated and similarly effective; § For SGLT2i, CV/ renal outcomes trials demonstrate their efficacy in reducing the risk of composite MACE, CV death, all-cause mortality, MI, HHF, and renal outcomes in individuals with T2D with established/high risk of CVD; # For GLP-1 RA, CVOTs demonstrate their efficacy in reducing composite MACE, CV death, all-cause mortality, MI, stroke, and renal endpoints in individuals with T2D with established/high risk of CVD.

Identify barriers to goals:

- Consider DSMES referral to support self-efficacy in achievement of goals
- Consider technology (e.g., diagnostic CGM) to identify therapeutic gaps and tailor therapy
- · Identify and address SDOH that impact achievement of goals

Glucoselowering medication in DM2: 2024 version

DIABETES CARE 2023;47(SUPPLEMENT_1) :S158-S178 DOI:10.2337/DC24-S009

A snapshot of (D)CKD and CVOT SGLT2i trials

				Alt								
Nation	al Ki	dney		A1	A2	A3						
Founda classifi	Foundation classification of CKD			dation fication of CKD		ndation sification of CKD			Normal to mildly increased	Moderately increased	Severely increased	
				<30 mg/g <3 mg/mmol	30-299 mg/g 3-29 mg/mmol	≥300 mg/g ≥30 mg/mmol						
	G1	Normal or high	≥90				CREDENCE					
	G2	Mildly decreased	60- 90	CANVAS EMPA-REG DECLARE TIMI			eGFR -30 - <90 ml/min/ 1.73 m ² and UACR- >300mg/g					
stages	G3a	Mildly to moderately decreased	45- 59				DAPA-CKD With or without DM					
GFR S	G3b	Moderately to severely decreased	30- 44				eGFR: ≥25-75 and UACR: ≥200 mg/g					
	G4	Severely decreased	15-29				EMPA-KIDNEY With or without DM					
	G5	Kidney failure	<15				eGFR: ≥20-45 or eGFR ≥45 to <90 and UACR ≥200 mg/g					

Heerspink et al 2020 <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005525/</u> Dr Priti Meena MD,FASN @priti899 http://www.nephjc.com/news/dapa-ckd

SGLT2i reduced the risk of kidney disease progression by 30-40%

EMPA-KIDNEY

A Primary Composite Outcome

CREDENCE

Placebo 2152 1993 1936 1858 1791 1664 1232 774 270 Dapagliflozin 2152 2001 1955 1898 1841 1701 1288 831 309

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614055/

https://www.nejm.org/doi/10.1056/NEJMoa2024816?

https://spiral.imperial.ac.uk/handle/10044/1/69122

SGLT2i reduce the rate of loss of eGFR & proteinuria

EMPA-KIDNEY

CREDENCE

> 99% on RAS

(95% CI 26% - 35%)

https://spiral.imperial.ac.uk/handle/10044/1/69122

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614055/

~98% on RAS

↓ UACR 35.1% **DM (+)** (95% CI 39.4% - 30.6%) ↓ UACR 14.8% **DM (-)** (95% CI 22.9% - 5.9%)

https://www.nejm.org/doi/10.1056/NEJMoa2024816? https://pubmed.ncbi.nlm.nih.gov/34619106/

EMPA-KIDNEY suggests that SGLT2i may work irrespective of whether the patient can tolerate an ACEi/ARB or not

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614055/

The Lancet 2022 400, 1788-1801 DOI: (10.1016/S0140-6736(22)02074-8)

SGLT2i

"Derisking" SGLT2i therapy

Review > J Clin Med. 2022 Oct 13;11(20):6051. doi: 10.3390/jcm11206051. Physicians' Considerations and Practice

Recommendations Regarding the Use of Sodium-Glucose Cotransporter-2 Inhibitors

Serge A Jabbour¹, Nasrien E Ibrahim², Christos P Argyropoulos³

Affiliations + expand PMID: 36294370 PMCID: PMC9604628 DOI: 10.3390/jcm11206051

GLP1RA in diabetic Kidney Disease

https://academic.oup.com/ndt/article/38/9/2041/6991221

Go with the FLOW

Exclusion Criteria

@brian rifkin **Current NYHA Class** Congenital or hereditary IV heart failure kidney disease History of malignancy Pregnancy or within 5 years breastfeeding Use of any GLP1-RA MI, stroke, hospitalization for unstable angina or (within 30 days) or combination RASi TIA within 60 days Planned coronary. Current dialysis carotid or peripheral (within 90 days) artery revascularization Uncontrolled proliferative 1 Transplant or diabetic retinopathy awaiting transplant

https://www.nephjc.com/news/flow

HEALTH

SCIENCES

FLOW trial – Kidney outcomes with semaglutide in T2DM and CKD

RANDOMIZED, DOUBLE-BLIND, PARALLEL-GROUP, MULTINATIONAL, PHASE 3B TRIAL

Background: GLP-1RAs improve glycaemic control and reduce body weight in patients with T2DM, and reduce the risk of CV events in patients at high CV risk. GLP-1RAs may also have kidney-protective effects, but their benefits on CKD progression remains to be confirmed. **Objectives:** FLOW is a randomized kidney outcomes trial designed to assess the treatment effect of semaglutide OW in a population of patients with CKD and T2DM at high risk of kidney disease progression (based on KDIGO classification). **Clinical implications:** The FLOW trial will provide evidence on the treatment effect of semaglutide on renal outcomes, potentially expanding treatment options for patients with T2DM to slow the progression of CKD and reduce renal failure.

https://doi.org/10.1093/ehjcvp/pvad080

Semaglutide for CKD in Patients with Type 2 Diabetes: "FLOW"ing with the Semaglu"TIDE" #NephJC

METHODS

International, doubleblind, placebo-controlled 28 countries

Type 2 DM and CKD: GFR 50-75 ml/min + ACR 300-5000 mg/g or GFR 25-<50 ml/min + ACR 100-5000 mg/g

Median follow-up, 3.4 years

Reference: Perkovic,V et al. Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes. NEJM, May 2024. VA by Anjana Gopal ≫@anjanagopal9

Conclusion: Semaglutide reduced the risk of clinically important kidney outcomes and death from cardiovascular causes in patients with type 2 diabetes and chronic kidney disease.

Heart and Kidney Protection in FLOW

Table 2. Efficacy and Safety Outcomes.*							
Outcome	Semaglutide (N=1767)	Placebo (N = 1766)	Hazard Ratio (95% CI)	Estimated Difference (95% CI)	P Value		
Primary outcome: major kidney disease events — no. (%)†	331 (18.7)	410 (23.2)	0.76 (0.66 to 0.88)	_	0.0003		
Components of primary outcome — no. (%)							
Persistent ≥50% reduction from baseline in eGFR	165 (9.3)	213 (12.1)	0.73 (0.59 to 0.89)	_	_		
Persistent eGFR <15 ml/min/1.73 m²	92 (5.2)	110 (6.2)	0.80 (0.61 to 1.06)	_	_		
Initiation of kidney-replacement therapy	87 (4.9)	100 (5.7)	0.84 (0.63 to 1.12)	_	—		
Death from kidney-related causes	5 (0.3)	5 (0.3)	0.97 (0.27 to 3.49)	_	—		
Death from cardiovascular causes	123 (7.0)	169 (9.6)	0.71 (0.56 to 0.89)	_	_		
Composite of kidney-specific components of the primary outcome	218 (12.3)	260 (14.7)	0.79 (0.66 to 0.94)	_	_		
Confirmatory secondary outcomes							
Mean annual rate of change in eGFR — ml/min/1.73 m²	-2.19	-3.36	_	1.16 (0.86 to 1.47)	<0.001		
Major cardiovascular events — no. (%)	212 (12.0)	254 (14.4)	0.82 (0.68 to 0.98)	_	0.029		
Death from cardiovascular causes	123 (7.0)	169 (9.6)	0.71 (0.56 to 0.89)	_	_		
Nonfatal myocardial infarction	52 (2.9)	64 (3.6)	0.80 (0.55 to 1.15)	_	_		
Nonfatal stroke	63 (3.6)	51 (2.9)	1.22 (0.84 to 1.77)	_	_		
Death from any cause — no. (%)	227 (12.8)	279 (15.8)	0.80 (0.67 to 0.95)	_	0.01		
-							

https://www.nejm.org/doi/full/10.1056/NEJMoa2403347

Some additional benefits of GLP1RA

Decrease in body weight by 4.1 kgr

Decrease in A1c by 0.81%

Decrease in SBP by 2.23 mmHg

44% reduction in major adverse limb events

No increase in hypoglycemic episodes

Safety events

4.5% v.s. 1.1% developed gastrointestinal side effects leading to drug discontinuation

Eye disorders (including cataracts) were reported in 3% v.s. 1.7%

No change in diabetic retinopathy rates

Aldosteronism Antagonism (MRA) for the reduction of cardiorenal risk across the spectrum of DKD

HEALTH SCIENCES

Effects of Finerenone reduced loss of eGFR and had modest effects on BP

Change in SBP < 3 mmHg throughout FIDELIO-CKD

Management of hyperkalemia during aldosterone antagonism for diabetic and nondiabetic CKD under combined RASi + MRA

Hypekalemia will occur with MRA (can't escape ENAC!)

Hyperkalemia will occur with MRAs irrespective of the MRA and the diabetic (or not) nature of CKD

Management of hyperkalemia will allow the safe use of MRAs

Continued use of MRAs is required to deliver their cardiovascular and kidney benefits

Potential strategies to manage the hyperkalemia risk by *any* MRA are:

- Measure the potassium (it never makes sense to "stop the count")
- Stop the MRA or reduce the dose
- "Convince" the kidneys to get rid of potassium (diuretics/SGLT2 inhibitors)
- Use a potassium binder

Protocol of the Finerenone trials gives guidance on how to manage potassium during MRA therapy safely

Circulation

ESTIMATED LIFETIME BENEFITS OF COMBINATION TREATMENT WITH SGLT2 INHIBITORS, GLP-1 RECEPTOR AGONISTS AND NON-STEROIDAL MRA COMPARED WITH CONVENTION CARE IN PATIENTS WITH TYPE 2 DIABETES AND ALBUMINURIA

Outcome							HR (95% CI)	Outcome								HR (95% CI)
MACE SGLT2i GLP-1 RA ns-MRA GLP-1 RA + ns-MRA SGLT2i + GLP-1 RA SGLT2i + ns-MRA SGLT2i + GLP-1 RA + ns-MRA					-		0.83 (0.75, 0.93) 0.86 (0.80, 0.93) 0.90 (0.81, 1.00) 0.77 (0.68, 0.88) 0.72 (0.63, 0.82) 0.75 (0.65, 0.87) 0.65 (0.55, 0.76)	CKD progression SGLT2i GLP-1 RA ns-MRA GLP-1 RA + ns-M SGLT2i + GLP-1 R	n RA RA			-	•			0.63 (0.53, 0.77) 0.86 (0.72, 1.02) 0.77 (0.67, 0.88) 0.66 (0.53, 0.83) 0.54 (0.42, 0.70)
Hospitalization for heart failure SGLT2i GLP-1 RA ns-MRA GLP-1 RA + ns-MRA SGLT2i + GLP-1 RA SGLT2i + ns-MRA SGLT2i + GLP-1 RA + ns-MRA	3				-		0.64 (0.53, 0.77) 0.89 (0.82, 0.98) 0.78 (0.66, 0.92) 0.69 (0.57, 0.84) 0.57 (0.47, 0.70) 0.50 (0.39, 0.64) 0.45 (0.34, 0.58)	SGLT2i + ns-MRA SGLT2i + GLP-1 I All-cause mortal SGLT2i GLP-1 RA ns-MRA	A RA + ns-MRA ity		-	-	- # -1	⊢ ₽- ₽-		0.49 (0.38, 0.61) 0.42 (0.31, 0.56) 0.85 (0.75, 0.96) 0.88 (0.82, 0.94) 0.89 (0.79, 1.00)
Cardiovascular death SGLT2i GLP-1 RA ns-MRA GLP-1 RA + ns-MRA SGLT2i + GLP-1 RA SGLT2i + ns-MRA SGLT2i + GLP-1 RA + ns-MRA			-		-		0.84 (0.72, 0.97) 0.87 (0.80, 0.94) 0.88 (0.76, 1.02) 0.77 (0.65, 0.91) 0.73 (0.61, 0.86) 0.74 (0.60, 0.91) 0.64 (0.51, 0.80)	GLP-1 RA + ns-M SGLT2i + GLP-1 F SGLT2i + ns-MRA SGLT2i + GLP-1 F	RA RA RA + ns-MRA	_		-		-		0.78 (0.68, 0.90) 0.75 (0.65, 0.86) 0.76 (0.64, 0.90) 0.67 (0.55, 0.80)
	0.25	C).5	0.75	1	1.25				0.25		0.5	0.75	1	1.25	
		Favors co	ombinatio	on therapy		Favors	conventional care			1	Favors cor	mbination	therapy		Favors	s conventional care

NEUEN BL ET AL. CIRCULATION 2023 [PUBLISHED ONLINE AHEAD OF PRINT] HTTPS://WWW.AHAJOURNALS.ORG/DOI/10.1161/CIRCULATIONAHA.123.067584

SGLT2i have a consistent effect SMAI irrespective of baseline use of GLP1-RA

	Events/patients (%	Event rate per 100 pa	tient years			
	SGLT2 inhibitor	Placebo	SGLT2 inhibitor	Placebo		HR (95% CI)
Baseline use of GLP-1 RA						
High atherosclerotic cardiovascular risk trials	14/936 (1.5)	17/693 (2.5)	0.4	1.0	<u>_</u>	0.60 (0.27 to 1.31)
Stable heart failure trials	3/47(6.4)	3/33 (9.1)	2.2	4.7		0.64 (0.13 to 3.12)
Chronic kidney disease trials	40/635(6.3)	53/640 (8.3)	3.2	4.5		0.67 (0.44 to 1.02)
Subtotal (I-squared = 0.0%, p = 0.64)	57/1618 (3.5)	73/1366 (5.3)	1.6	2.9	\sim	0.65 (0.46 to 0.94)
No baseline use of GLP-1 RA						
High atherosclerotic cardiovascular risk trials	469/23585(2.0)	526/17302(3·0)	0.6	1.3	•	0.59 (0.52 to 0.67)
Stable heart failure trials	235/4781 (4.9)	231/4798 (4.8)	2.9	3.1	- - -	1.02 (0.85 to 1.22)
Chronic kidney disease trials	688/9839 (7.0)	1015/9817 (10.3)	3.7	5.6		0.64 (0.58 to 0.71)
Subtotal (I-squared = 70·4%, p<0.001)	1392/38205(3.6)	1772/31917(5.6)	1.7	2.9		0.67 (0.62 to 0.72)
Total	1449/39823(3.6)	1845/33283 (5.5)	1.7	2.9		0.67 (0.62 to 0.72)
Heterogeneity by use of GLP-1 RA: p = 0.81					0.25 0.5 1.0 2.0 4.0	
					HR (95% CI) Favours Favours SGLT2 inhibitor placebo	

https://www.smart-c.net/resources/

https://www.sciencedirect.com/science/article/abs/pii/S2213858724001554

Do MRA/SGLT2i interfere with each other?

MRA IN DAPA-CKD

SGLT2I IN THE FIDELIO-DKD TRIAL

а	Dapagliflozi	in Placebo	Dapagliflozi	n Placebo			Hazard Ratio (95% Cl)	P Value for	Absolute Risk Difference, %	P Value for
	n	v/N	Events/100	patient-yea	s		(00% 04)		(95% CI)	
Primary endpoin	t: eGFR decl	line ≥50%, 8	ESKD, or kidr	ey or CV d	eath					
With MRA	16/109	21/120	6.9	8.8		→	0.76 (0.40, 1.47)	0.59	-2.8 (-12.3, 6.7)	0.59
Without MRA	181/2043	291/2032	4.5	7.4		H#H	0.60 (0.50, 0.72)		-5.5 (-7.4, -3.5)	
Kidney-specific :	secondary e	ndpoint				:				
With MRA	7/109	12/120	3.0	5.1	⊢		0.61 (0.24, 1.57)	0.96	-3.6 (-10.6, 3.5)	0.75
Without MRA	135/2043	231/2032	3.3	5.9		H H H	0.56 (0.45, 0.69)		-4.8 (-6.5, -3.0)	
eGFR decline ≥5	0%					:				
With MRA	5/109	11/120	2.2	4.6		• + ·	0.46 (0.16, 1.35)	0.65	-4.6 (-11.1, 1.9)	0.89
Without MRA	107/2043	190/2032	2.6	4.8		H H	0.54 (0.43, 0.68)		-4.1 (-5.7, -2.5)	
ESKD										
With MRA	4/109	10/120	1.7	4.1		•	0.48 (0.15, 1.58)	0.36	-4.7 (-10.7, 1.4)	0.46
Without MRA	105/2043	151/2032	2.6	3.8		H - -1	0.66 (0.51, 0.85)		-2.3 (-3.8, -0.8)	
Hospitalisation f	or heart failu	are or CV d	eath							
With MRA	15/109	17/120	6.3	6.9		⊢i	0.88 (0.43, 1.77)	0.45	-0.40 (-9.4, 8.6)	0.76
Without MRA	85/2043	121/2032	1.9	2.8		H -	0.69 (0.52, 0.91)		-1.8 (-3.1, -0.4)	
All-cause death										
With MRA	11/109	13/120	4.6	5.0			0.86 (0.38, 1.95)	0.46	-0.7 (-8.7, 7.2)	0.73
Without MRA	90/2043	133/2032	2.0	3.0		H•	0.67 (0.51, 0.87)		-2.1 (-3.5, -0.7)	
					0.2	05 1 20	50			
				-	0.2	0.0 1 2.0			l	
				Dapa	gliflozin	Better Placebo	Better			

	Finerenone	e (n = 2833)	Placebo	(<i>n</i> = 2841)				
Outcome	n/N of patients with events (%)	No. of patients with event per 100 patient-years	n/N of patients with events (%)	No. of patients with event per 100 patient-years	-	Hazard ratio	9 (95% CI)	P value
Primary composite kidney outcome								0.21
Baseline SGLT-2i	14/124 (11.3)	4.66	10/135 (7.4)	3.07	ب ـــــ		1.38 (0.61-3.10)	
No baseline SGLT-2i	490/2709 (18.1)	7.73	590/2706 (21.8)	9.39	•		0.82 (0.72-0.92)	
Secondary composite kidney outcor	ne							0.54
Baseline SGLT-2i	3/124 (2.4)	0.97	6/135 (4.4)	1.81			0.50 (0.12-1.99)	
No baseline SGLT-2i	249/2709 (9.2)	3.77	320/2706 (11.8)	4.88	H ar t		0.77 (0.65-0.91)	
Composite CV outcome								0.46
Baseline SGLT-2i	15/124 (12.1)	4.90	15/135 (11.1)	4.44	·	-	1.12 (0.55-2.30)	
No baseline SGLT-2i	352/2709 (13.0)	5.12	405/2706 (15.0)	5.99	-	•	0.85 (0.74-0.98)	
				0.0625	0.250 1.	00 4.00		
				≺ Fav	ors finerenone	Eavors place	ebo	

No evidence of effect modification based on limited and subject to selection effect post hoc subgroup data

https://doi.org/10.1016/j.ekir.2021.12.013

https://www.kireports.org/article/S2468-0249(21)01467-4/fulltext

Chronic Kidney Disease Means Urgent Kidney Disease

Traditional/conservative approach

Accelerated approach

Rapid sequence approach

3 months		3 months
ACEi/ARB	ns-MRA	Titrate dose, reinforce
SGLT2i	GLP-1 RA	control
Sequence in	ndividualised	
based on don	ninant clinical	
prior	rities	

Match intensity of treatment to risk

Prioritise patients at high or very high risk* kidney/cardiovascular risk (especially those with severely increased albuminuria) for accelerated or rapid sequence approach *(e.g. based on KDIGO heat map, KFRE or other validated risk score)

https://doi.org/10.2215/CJN.000000000000526

Some points from my personal practice

5 mg of Lisinopril does not qualify as maximum tolerated dose of ACEi/ARB

You can probe the max tolerated dose with dose escalation every 10 days

Prescribing a SGLT2i in a patient with prior intolerance (in my book only "real" AKI, not simply creatinine bumps) to ACEI or ARB is **not an issue** as we know from EMPA-KIDNEY but ...

Strongly consider starting the SGLT2i to lower the K and then add ACEi/ARB + MRA (may need a K binder)

One may simultaneously start MRA and SGLT2i in those with eGFR > 45

For those with high cardiovascular risk and minimal proteinuria : ns-MRA on label, but SGLT2i off label: if you want to stay on label start with the ns-MRA (but your patient deserves both)

GLP1 can be started independently without even bothering to time it with respect to the other classes

You don't need repeat office visits; you can get everyone on the four pillars using repeat lab slips and remote monitoring off labs (this is not the 1980s anymore)

Chronic Kidney Disease in the Older Adult Patient with Diabetes

Raja Ravender ¹, Maria-Eleni Roumelioti ¹, Darren W Schmidt ¹, Mark L Unruh ¹, Christos Argyropoulos ¹

Affiliations + expand

PMID: 38256482 PMCID: PMC10816477 DOI: 10.3390/jcm13020348

Table 5. Finerenone and clinical outcomes in older vs. younger individuals (hazard ratio and 95% confidence intervals).

×

Clinical Trial	Outcome	Effect in Younger Patients	Effect in Older Patients
FIGARO-DKD	MACE/HHF ²	0.90 0.74–1.10	0.85 0.72–1.00
FIGARO-DKD ¹	CR ³	0.72 0.52–0.99	0.92 0.61-1.38
FIDELIO-DKD	CR	0.85 0.72–1.01	0.79 0.67–0.94

¹ The subgroup analysis was presented in a follow-up publication [136] and used a sustained reduction of eGFR > 57%, rather than the 40% used in the primary analysis of the FIGARO-DKD study. ² HHF: hospitalization for heart failure, MACE: major adverse cardiovascular events (composite of cardiovascular death, non-fatal myocardial infarction, or stroke). ³ CR: composite renal outcome.

Don't forget your elderly patients!

What about the frail patient on many drugs?

EMPA-KIDNEY: Does empagliflozin continue to show beneficial effects in frail patients with chronic kidney disease?

Conclusions: The findings support the use of SGLT2 inhibitors in CKD, irrespective of frailty. Absolute benefits clearly exceeded any potential harm across the spectrum of frailty in EMPA-KIDNEY.

Kaitlin J. Mayne, Rebecca J. Sardell, Natalie Staplin, et al. Frailty, multimorbidity, and polypharmacy: exploratory analyses of the effects of empagliflozin from the EMPA-KIDNEY trial. 2024, CJASN DOI 10.2215/CJN.0000000000000498 Visual abstract by Cristina Popa, MD

Highest frailty quartiles > 71 y/o

Clinical Journal of the American Society of Nephrology

http://bit.ly/CJASN0498

Kidney (and other solid organ) transplant recipients are at risk for NODAT & CKD

Drug Type	Pathophysiology
mTOR inhibitors	Increase in apoptosis Decrease in β-cell size Reduction in basal and insulin-stimulated glucose uptake and glycogen synthesis Reduction in basal and insulin-stimulated glucose uptake and glycogen synthesis Decrease in insulin-stimulated Akt phosphorylation
Calcineurin Inhibitors	Both tacrolimus and cyclosporin have diabetogenic effects Decrease in insulin secretion Increase in insulin resistance Toxicity on β-cells Tacrolimus has more diabetogenic effects than cyclosporin
Mycophenolate	No diabetogenic effect
Belatacept	Not independent diabetogenic effect Decreased risk compared to Tacrolimus
Glucocorticoids	Increased insulin resistance Increased gluconeogenesis Suppressed insulin secretion B-cell apoptosis

https://www.mdpi.com/2077-0383/13/3/793

Absence of Evidence ≠ Evidence of Absence

- Multiple (small) studies of SGLT2i and GLP1 or GIP-GLP1RA in transplant populations
- Underpowered for clinical outcomes
- Strong reductions in A1c and BW not different from the general population
- Strong insulin sparing effect (particularly with GLP1RA
- Increased incidence of UTI (not pyelonephritis) with SGLT2i
- No interactions with immunosuppressants
- Though not specifically studied in this population, CV risk drives decisions

https://www.mdpi.com/2077-0383/13/3/793

Which anti-glycemic/antifibrotic agents to recommend in 2024

- 1. Patient's cardiorenal risk
- 2. Cardiovascular and renal end-points
 - Medical literature
 - Regulatory submission documents
- 3. Safety profile
- 4. What the insurance will pay
- 5. The copay the patient can afford
- 6. Level of renal function : is irrelevant. Start SGLT2i/GLP1RA/MRA up to eGFR of 20, continue until the patients are on dialysis

Take home points for this section

- 1. Patients may be selected for further therapies based on UACR
- 2. SGLT2i have broad cardiovascular, renal and heart failure benefits
- 3. Cardiorenal benefits of SGLT2i are likely to be class, rather than agent specific
- 4. Effects of SGLT2i on CKD don't differ between diabetic and non-diabetic forms of CKD
- 5. Successful roll out of SGLT2i is likely to have the same population level effects that ACE/ARBs had
- 6. Selective, non-steroidal MRAs have the same effects on cardiorenal outcomes as SGLT2i
- 7. GLP1RA are part of the emerging SOC in DKD (sema will likely get FDA approval in 2024)
- 8. Don't ask who will prescribe the SGLT2i/MRA/GLP1RA for your patient, but when YOU will prescribe SGLT2i/MRA/GLP1RA and how you will do it like royalty

Resources

•ASN Diabetic Kidney Disease Collaborative - **online resource for patients and caregivers** <u>https://epc.asn-online.org/learning_course/your-kidneys-and-your-health/</u>

 ASN Diabetic Kidney Disease Collaborative - online resource for healthcare professionals (PCPs/nephrologists/endocrinologists/cardiologists/pharmacists)

https://epc.asn-online.org/learning_course/management-of-chronic-kidney-disease-in-people-withdiabetes/

•Special Issue Journal of Clinical Medicine (mostly reviews around pharmacotherapy, special populations and niche sglt2 and incretin therapy stuff)

https://www.mdpi.com/journal/jcm/special_issues/5YPA16M6VN

